What Explains Geographic Variation in Investment?

Shohini Kundu UCLA Anderson Nishant Vats Chicago Booth

12th Emerging Markets Conference

Motivation

- Investment is geographically concentrated
 - ► E.g., Steel City, Motor City, Silicon Valley, Wall Street, etc.

- Understanding the forces behind such clusters is fundamental to understanding the origins of geographic inequality
 - Why are certain areas richer than others?
 - What (if anything) can be done to address these differences?

Research Objective

What explains geographic variation in investment?

• Conventional Answers

- Availability and cost of factors of production
- Geographic advantages
- Firm characteristics
- Self-fulfilling expectations

- This Paper:
 - Can History Explain the Geographic Concentration of Investment?
 - ★ What is the channel?

Relationship Between History and Investment Empirical Challenge

- The central role of history may seem obvious if investment is assumed to follow a path dependent process
 - ▶ Ethier (1982), Panagariya (1986), Arthur (1986), and Krugman (1987)

- However, establishing the empirical relationship between history and investment is difficult because:
 - The eventual choice of the equilibrium can either be driven by the history or self-fulfilling expectations (Krugman (1991))
 - Other confounding factors
 - * Availability and cost of factors of production ((Marshall, 1920))
 - ★ Geographic advantage (Ellison & Glaeser, 1997)

Historical Setting: India

• All areas subject to uniform *de-jure* administrative, legal and political structure post independence

This Paper in a Nutshell

- **§** Fact: Investment in India is geographically concentrated
 - Concentration is 20 pp higher than a frictionless benchmark
 - Institutions can explain 13% of total geographic variation in investment
- **Wey Result:** Weak Institutions discourage investment
 - Intensive Margin: Projects are 10.8% smaller in size in direct ruled districts relative to indirect ruled districts by the same firm within a district-pair
 - Extensive Margin: Projects are 25% less likely to be announced in direct ruled districts relative to indirect ruled districts
- Mechanism: History can have long-run consequences through its effect on:
 - Economic Organization
 - State Capacity

Overview

Setting & Data

Investment & History

- Investment Concentration
- Aggregate Analysis
- Baseline Comparison
- Local Identification Approach
- Instrumental Variable Strategy

3 Mechanism

• Destruction of Economic Organizations - The Case of Cotton

Conclusion

Table of Contents

Setting & Data

Investment & History

- Investment Concentration
- Aggregate Analysis
- Baseline Comparison
- Local Identification Approach
- Instrumental Variable Strategy

B Mechanism

• Destruction of Economic Organizations - The Case of Cotton

Conclusion

Current and Colonial Boundaries

	Ceded	Conquest	Grant	Lapse	Misrule	Total
Initial Settlement	0	6	3	0	0	9
Ring Fence (1765-1818)	58	114	15	0	3	190
Subordinate Isolation (1819-1856)	5	22	0	27	17	71
Post 1857 Revolt	2	0	0	0	0	2
Direct Ruled	65	142	18	27	20	272
Indirect Ruled						152
Total						424

Predicting British Rule

Data: Geography of Project Announcements

• Source: CMIE CapEx (1995-2018)

Table of Contents

Setting & Data

Investment & History

- Investment Concentration
- Aggregate Analysis
- Baseline Comparison
- Local Identification Approach
- Instrumental Variable Strategy

Mechanism

• Destruction of Economic Organizations - The Case of Cotton

Conclusion

Fact: Investment is Geographically Concentrated

Geographic Concentration of Investment and Direct Rule

Baseline: Investment and Direct Rule

Investment is 8% lower in direct ruled areas relative to indirect ruled areas

 $Ln(Y_{i,j,t}) = \beta \cdot \text{Direct Rule}_j + \theta_{i,y} + \theta_{s(j \in s),y} + \theta_t + Latitude_j + Longitude_j + \varepsilon_{i,j,t}$

Dep Var: Ln(Project Size)	(1)	(2)	(3)	(4)	(5)
Direct Rule $(=1)$	-0.1755**	-0.1130***	-0.1146**	-0.0864**	-0.0881***
	(0.0836)	(0.0416)	(0.0526)	(0.0348)	(0.0326)
	[0.0548]***	[0.0356]***	[0.0371]***	[0.0332]***	[0.0331]***
State FE	Yes	Yes	Yes	Yes	
Firm FE		Yes	Yes		
$\operatorname{Qtr} imes \operatorname{Year} \operatorname{FE}$			Yes	Yes	Yes
$Firm \times Year FE$				Yes	Yes
$State \times Year \; FE$					Yes
Lat/Long	Yes	Yes	Yes	Yes	Yes
# Obs	28,820	28,820	28,820	28,820	28,820
R^2	0.0303	0.5067	0.5465	0.7088	0.7160

Balanced Panel Analysis: Investment and Direct Rule

$$I_{j,t} = \beta \cdot \text{Direct } \text{Rule}_j + \theta_{s(j \in s), t} + \varepsilon_{j,t}$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Announce=1	$I_{j,t}$	$I_{j,t} I_{j,t} > 0$	$Projects_{j,t}$	$Projects_{j,t} \#>0$	$\frac{I_{j,t}}{\sum_{j \in s} I_{j,t}}$	$\frac{\text{Projects}_{j,t}}{\sum_{j \in s} \text{Projects}_{j,t}}$
Direct Rule (=1)	-0.2534* (0.1346)	-16174.5813** (7910.8774)	-28350.1337** (11777.6353)	-4.1791** (2.0257)	-6.8549** (2.7350)	-7.0724** (2.9954)	-7.1912* (3.7650)
$State \times Qtr \times Year FE$	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample Average	0.6453	19861.4928	37851.9045	4.4693	7.7296	8.7459	8.8529
	(0.0931)	(5367.5117)	(7901.4838)	(1.3584)	(1.8328)	(2.0333)	(2.5316)
# Obs	35,256	35,256	17,052	35,256	19,050	35,256	35,256
R ²	0.1854	0.2363	0.3115	0.1800	0.1621	0.0500	0.1070

- Extensive Margin: Projects are 25% less likely to be announced in direct ruled districts relative to indirect ruled districts
- Share of investment & share of number of projects are 7% lower in direct ruled districts relative to indirect ruled districts

Robustness of Baseline Results

- Balance Test Assumption
 Results
 Moran's I statistic
- Controls for Geography Results
- Controls for Other Covariates Results
- Placebo Test Results

Local Identification Approach: Investment and Direct Rule Empirical Strategy

 $Ln(Y_{i,j,t}) = \beta \cdot \text{Direct Rule}_j + \frac{\theta_{i,p(j \in p)y}}{\theta_t + Latitude_j} + Longitude_j + \varepsilon_{i,j,t}$

- Sample of bordering districts within a state

 Sample
- Compare investment projects of the same firm within a contiguous district-pair using firm × district-pair × year fixed effects
- Whether a district within a contiguous direct-indirect ruled pair was under direct British rule or not is likely a matter of chance

• Identifying Assumption:

- Adjacent districts are expected to follow similar paths had India not been colonized
- $\theta_{i,p(j \in p)y}$ implicitly controls for:
 - ★ Costs of moving goods, people, and ideas
 - ★ Geography
 - * Shocks to Local Investment Opportunities

Local Identification Approach: Investment and Direct Rule Empirical Results

 $Ln(Y_{i,j,t}) = \beta \cdot \text{Direct } \text{Rule}_j + \theta_{i,p(j \in p)y} + \theta_t + Latitude_j + Longitude_j + \varepsilon_{i,j,t}$

Dep Var: Ln(Project Size)	(1)	(2)	(3)
Direct Rule (=1)	-0.0974** (0.0469)	-0.1090** (0.0488)	-0.1084** (0.0457)
Qtr imes Year FE	Yes	Yes	Yes
$Firm \times Year FE$	Yes	Yes	
District-Pair $ imes$ Year FE	Yes	Yes	
$Firm \times District\operatorname{-Pair} FE$		Yes	
Firm imes District-Pair imes Year FE]		Yes
Lat/Long	Yes	Yes	Yes
# Obs	11,947	11,947	11,947
R^2	0.7856	0.7940	0.7944

 Projects announced in direct ruled districts are 10.8% smaller in size relative to the projects announced in indirect ruled districts by the same firm within a contiguous district-pair
 Falsification

Addressing Selection: IV Strategy

Death of Ruler with No Male Heir

	(1)	(2)	(3)	(4)	(5)	(6)
Dep Var: In(Project Size)	OLS	IV	2SL Second Stage	S First Stage	Falsification	
Direct Rule (=1)	-0.2236*** (0.0604)		-0.2239** (0.0960)			
Ruler Death, No Heir, Lapse (=1)	. ,	-0.1475* (0.0766)		0.6589*** (0.1225)		
Ruler Death, No Heir, No Lapse (=1)		()		()	0.0037	
Ruler Death, Yes Heir, Lapse (=1)					(0.0500)	0.0072
						(0.0764)
$Qtr \times Year FE$	Yes	Yes	Yes	Yes	Yes	Yes
$Firm \times Year FE$	Yes	Yes	Yes	Yes	Yes	Yes
State \times Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Lat/Long	Yes	Yes	Yes	Yes	Yes	Yes
# Obs	10,293	10,293	10,293	10,293	8,129	8,129
R^2	0.5692	0.5693	-0.0563	0.6691		
KP LM Statistic				5.9527**		
KP Wald F Statistic				28.9393		

• Under the policy of *Doctrine of Lapse*, Lord Dalhousie took direct control of areas where the incumbent Indian ruler died without a natural heir

Table of Contents

Setting & Data

Investment & History

- Investment Concentration
- Aggregate Analysis
- Baseline Comparison
- Local Identification Approach
- Instrumental Variable Strategy

3 Mechanism

• Destruction of Economic Organizations - The Case of Cotton

Conclusion

Mechanism

• Direct British rule affects corporate investment in the present

 Destruction of existing economic organizations – focus of today's talk

Lower State Capacity

Destruction of Economic Organizations The Case of Cotton

- Cotton-producing districts were more likely to be under direct British rule
- These areas were subject to adverse economic policies, resulting in the destruction of existing economic organizations with long-run detrimental effects

Pre-colonial History of Cotton in India

 India produced about 25% of the world's manufacturing output in 1750, of which, textiles constituted a significant share (Marks, 2019)

 Indian textiles dominated the world textile market in the 18th century, accounting for 25% of the global textile trade (Maddison et al., 1995)

• The Indian cotton textiles were the most important manufactured goods in the 18th century (Parthasarathi, 2011) with India being home to the world's most important cotton textile industry (Robson, 1957)

First Stage: Cotton & Direct British Rule

Cotton-producing districts were more likely to be under direct British rule

• A cotton producing district was 40% more likely to be under direct British rule, relative to indirect rule

Capture of Cotton Industry

Why did the British took direct control of cotton producing areas?

- Cypher, 2008 notes that the Indian textile production was marked by the presence of skilled laborers and large factory towns, which threatened the British textile industry a leading sector of the British economy
- Direct rule of cotton producing areas allowed British to
 - Directly control the supply of cotton, securing a monopoly on the supply of Indian goods and products (Sahoo (2015))
 - Protect the interests of the British textile industry and increase Britain's share of global trade

"England began with driving the Indian cottons from the European market; it then introduced twist into Hindostan, and in the end inundated the very mother country of cotton with cottons"

- Karl Marx, The British Rule in India, 1853

Colonial Destruction of Cotton Industry

- The negative effect of the destruction of India's textile industry is evidenced by its fall in global textile exports from 25% in the 17th century to just 2% at the end of British rule in 1947 (Das, 1946).
- The British destroyed the Indian cotton industry through five ways:
 - Protectionism of the British textile industry through tariffs
 - Price fixing through monopsony power
 - Violence against textile producers
 - Deprivation of new technological innovations
 - Neglect of local institutions

"The labour of these artisans was so cruelly suppressed that they were obliged to cut off their own thumbs in order to avoid imprisonment...In my opinion, such cutting off would be less cruel than the terrorism which resulted in self-mutilation"

- Gandhi, 1921, "Notes." Young India

Long Run Effects of Capture of Cotton Industry

IV with Local Identification Approach: Precolonial Cotton Production

	(1)	(2)	(3)	(4)
Dep Var: In(Project Size)	IV	2SL	S	Falsification
		Second Stage	First Stage	
Direct Rule (=1)		-0.2272* (0.1270)		
Precolonial Cotton $(=1)$	-0.2073*		0.9120***	0.0344
	(0.1166)		(0.1326)	(0.0876)
Qtr imes Year FE	Yes	Yes	Yes	Yes
$Firm \times District\operatorname{-Pair} \times Year \ FE$	Yes	Yes	Yes	Yes
Lat/Long	Yes	Yes	Yes	Yes
# Obs	9,491	9,491	9,491	1,871
R^2	0.7901		0.7786	0.8077
KP LM Statistic			7.3567***	
KP Wald F Statistic			47.3955	

• Results from Full Sample • Results

Why the long-run effect?

- The destruction of strong economic organizations hampers the intergenerational transfer of skills and knowledge
- The destruction of a dominant industry that developed over a long period of time disrupts the natural evolution process of Marshallian forces and renders the comparative advantage of the area and its people futile

Table of Contents

Setting & Data

Investment & History

- Investment Concentration
- Aggregate Analysis
- Baseline Comparison
- Local Identification Approach
- Instrumental Variable Strategy

B Mechanism

• Destruction of Economic Organizations - The Case of Cotton

Conclusion

Conclusion

History can explain investment concentration

- ► Aggregate Result: Institutions explain 13% of total geographic variation in investment
- Micro-level Estimate: Investment is 8-10% lower in areas with low institutional quality

- **2** History can have long-run consequences through its effect on:
 - Economic Organizations
 - State Capacity

APPENDIX

Selection on Observable: Direct & Indirect Rule

Dep Var: Direct Rule (=1)	(1)	(2)	(3)	(4)	(5)
Altitude (MSL)	0.0002				0.0002
	(0.0003)				(0.0002)
Coast (=1)	0.1820				0.1720
	(0.1176)				(0.1179)
Ln(Area)	-0.0637				-0.0692
	(0.0816)				(0.0799)
Slope	-1.0837				2.6706
	(3.6432)				(2.3314)
Rain (cm)	0.0015				0.0012
	(0.0010)				(0.0009)
Max-Temp	0.0061				-0.0010
	(0.0113)				(0.0113)
Min-Temp	0.0126				0.0028
	(0.0104)				(0.0090)
Ln(Distance)		0.0396			0.0707
		(0.0611)			(0.0577)
Maratha Ruler			0.2279		0.2449
			(0.1550)		(0.1524)
Muslim Ruler			0.3853***		0.3319**
			(0.1276)		(0.1420)
Prop Muslim				0.2663	-0.1818
				(0.3447)	(0.2848)
Prop Sikhs				0.6377	-0.2291
				(1.0841)	(0.9907)
Prop Lower Caste				0.5613	0.5439
				(0.3940)	(0.3518)
Prop Elites				-0.3153	-0.1544
				(0.6895)	(0.6948)
Constant	0.5330	0.4275	0.4336***	0.5111***	0.3777
	(0.8825)	(0.3253)	(0.0933)	(0.1445)	(0.9042)
# Obs	204	204	204	204	204
R ²	0.0814	0.0042	0 1257	0.0293	0 1939
				0.0-00	

Spatial Autocorrelation - Moran I statistic • Back

Effect Not Driven by Geography

Dep Var: Ln(Project Size)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Direct Rule (=1)	-0.0692**	-0.0916***	-0.1045***	-0.1025***	-0.0782**	-0.0926**	-0.0846**	-0.0856**
	(0.0317)	(0.0344)	(0.0340)	(0.0348)	(0.0346)	(0.0355)	(0.0323)	(0.0376)
Altionale (MCL)	0.0001							0.0001
Aititude (MSL)	-0.0001							-0.0001
Coast (=1)	(0.0001)	0.0210						0.0050
		(0.0470)						(0.0493)
Ln(Area)		(0.0.1.0)	0.0296					0.0423
			(0.0274)					(0.0293)
Slope				0.6204				0.7599
				(0.7148)				(1.1256)
Rain (cm)					-0.0007**			-0.0006*
					(0.0003)			(0.0004)
Max-Temp						0.0042		-0.0004
Min Trees						(0.0031)		(0.0033)
win- temp						(0.0041)		-0.0006
In(Distance)						(0.0041)	-0.0217***	-0.0437**
en(bistance)							(0.0065)	(0.0186)
							()	(,
$Qtr \times Year FE$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$Firm \times Year FE$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State \times Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Lat/Long	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
# Obs	27,223	28,820	24,470	24,470	28,820	23,499	28,820	21,181
R ²	0.7195	0.7160	0.7318	0.7317	0.7161	0.7302	0.7161	0.7380

Placebo Test Back

- Randomly assign a district to be direct ruled
- There are 0.1% of points to the left of the red-dashed line

Sample of Bordering Districts **Deck**

Sample of Bordering Hinterland Districts Pack

Other Covariates Back

Ruler Religion and Other Population Demographics

Dep Var: In(Project Size)	(1)	(2)	(3)
Direct Rule $(=1)$	-0.0831**	-0.1021***	-0.0932**
	(0.0368)	(0.0339)	(0.0356)
Maratha Ruler	-0.0330		-0.0330
	(0.0398)		(0.0415)
Muslim Ruler	-0.0212		-0.0375
	(0.0151)		(0.0302)
Prop Muslim		-0.0249	-0.0083
		(0.2007)	(0.2025)
Prop Sikhs		-0.3338	-0.3783*
		(0.2109)	(0.2225)
Prop Lower Caste		0.0646	0.0634
		(0.1195)	(0.1195)
Prop Elites		-0.0742	-0.0541
		(0.2140)	(0.2145)
$Qtr \times Year \; FE$	Yes	Yes	Yes
$Firm\timesYearFE$	Yes	Yes	Yes
State \times Year FE	Yes	Yes	Yes
Lat/Long	Yes	Yes	Yes
# Obs	19,800	19,800	19,800
R^2	0.7305	0.7305	0.7305

Log Investment for Balanced Panel Analysis

Dep Var: $ln(1 + I_{j,t})$	(1)	(2)
Direct Rule $(=1)$	-2.6273*	-1.6556**
	(1.3827)	(0.6892)
State-Qtr-Year FE	Yes	Yes
Sample	All Districts	$I_{j,t} > 0$
# Obs	35,256	17,052
R^2	0.2008	0.2656

IV: Precolonial Cotton Production • Back

Robustness: Full Sample

	(1)	(2)	(3)		
Dep Var: In(Project Size)	IV	2SLS			
		Second Stage	First Stage		
Direct Rule $(=1)$		-0.3119***			
		(0.1078)			
Precolonial Cotton (=1)	-0.1293***		0.4144***		
	(0.0372)		(0.1119)		
	· · · ·		()		
$\operatorname{Qtr} imes \operatorname{Year} \operatorname{FE}$	Yes	Yes	Yes		
Firm imes Year FE	Yes	Yes	Yes		
State $ imes$ Year FE	Yes	Yes	Yes		
Lat/Long	Yes	Yes	Yes		
# Obs	19,800	19,800	19,800		
R^2	0.7305		0.6738		
KP LM Statistic			10.0881***		
KP Wald F Statistic			13.7112		

Provision of Public Goods

	(1)	(2)	(3)	(4)	(5)
	Total School	Primary School	Middle School	High School	Electricity
Direct Rule $(=1)$	-0.0844	-0.0536	-0.0248	-0.0059	0.0114
	(0.0887)	(0.0601)	(0.0187)	(0.0128)	(0.0115)
District-Pair $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes
Lat/Long	Yes	Yes	Yes	Yes	Yes
# Obs	1,026	1,026	1,026	1,026	1,026
R^2	0.7800	0.7568	0.8272	0.8429	0.9317
Mean	1.7380	1.0845	0.3978	0.2557	0.7443
Median	1.5170	0.9248	0.3412	0.2133	0.9763
Std. Dev.	1.0615	0.6872	0.2714	0.1955	0.3278

• No differences in provision of public goods such as schools and electricity

Alternative Explanations: Law Enforcement Court Delays & Direct Rule

 $Ln(1 + Delay_{i,j,t}) = \beta \cdot \text{Direct Rule}_j + \theta_{i,p(j \in p)y} + \theta_t + Latitude_j + Longitude_j + \varepsilon_{i,j,t}$

Dep Var: In(Mean Delay)	(1)	(2)	(3)
Direct Rule $(=1)$	-0.0025	-0.0025	-0.0025
	(0.0245)	(0.0245)	(0.0243)
Statute \times Year FE	Yes	Yes	
District-Pair $ imes$ Year FE	Yes	Yes	
Statute $ imes$ District-Pair FE		Yes	
Statute \times District-Pair \times Year FE			Yes
Lat/Long	Yes	Yes	Yes
# Obs	180,580	180,580	180,580
R^2	0.6155	0.7204	0.8077

• No differences in the enforcement of law

Alternative Explanation

Trust in State Apparatus - Cannot Explain our Results

Alternative Explanation • Back

Community Cooperation & Conflict - Cannot Explain our Results

Moran's Spatial Autocorrelation

Moran I statistic measures the interdependency between different regions and ranges from -1 to $1\,$

- Under random distribution, the statistic approaches zero, asymptotically.
- A statistic value above zero reflects positive spatial autocorrelation between districts *i* and *j*.
- A statistic value below 0 reflects negative spatial autocorrelation between districts *i* and *j*.

Moran's I statistic is computed as follows:

$$I = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_{i} z_{j}}{\sum_{i=1}^{n} z_{i}^{2}}$$
(1)

Construction of Weight Matrix

In the weight matrix, diagonal elements are 0 (the distance between a region and itself is 0).

$$W = \begin{bmatrix} 0 & w_{1,2} & \cdots & w_{1,m-1} & w_{1,m} \\ w_{2,1} & 0 & \cdots & w_{2,m-1} & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{m-1,1} & w_{m-1,2} & \cdots & 0 & w_{m-1,m} \\ w_{m,1} & w_{m,2} & \cdots & w_{m,m-1} & 0 \end{bmatrix}$$
(2)

In our analysis, we use two types of spatial weight matrices: inverse weighting and uniform weighting. Inverse weights between districts i and j are constructed in the following way.

$$w_{ij} = \begin{cases} \frac{d_{ij} - \delta}{\sum_{j=1}^{n} d_{ij} - \delta} & d_{ij} < d, i \neq j, \delta > 0\\ 0 & otherwise \end{cases}$$
(3)

Local Identification Approach: Falsification

Sample of Hinterland Districts Sample Sample Back

Dep Var: Ln(Project Size)	(1)	(2)	(3)
Hinterland (=1)	0.0382	0.0353	0.0355
	(0.0549)	(0.0391)	(0.0353)
Qtr imes Year FE	Yes	Yes	Yes
Firm imes Year FE	Yes	Yes	
District-Pair $ imes$ Year FE	Yes	Yes	
$Firm imes District\operatorname{-Pair} FE$		Yes	
$Firm imes District\operatorname{-Pair} imes Year FE$			Yes
Lat/Long	Yes	Yes	Yes
# Obs	4,953	4,953	4,953
R^2	0.8340	0.8431	0.8432

- Results only appear when we cross a boundary separating direct and indirect ruled districts
- Results unlikely to be driven by spatial autocorrelation, as posited by Kelly (2019)

Investment Concentration and State Characteristics Pack

$HHI_s = \beta$. %	Direct	Rules +	- Γ <i>Χ</i> ₅	$+ \varepsilon_s$
-----------------	-----	--------	---------	----------------	-------------------

Dep Var: HHI	(1)	(2)	(3)	(4)	(5)	(6)
% Direct Rule	0.1213*	0.1463**	0.1227*	0.1522*	0.1514*	0.1369*
	(0.0661)	(0.0531)	(0.0685)	(0.0793)	(0.0813)	(0.0778)
# Districts		0.0100***	0 0100***	0 0100***	0.0104***	0.0102***
# Districts		-0.0162	-0.0100	-0.0100	-0.0194	-0.0105
		(0.0038)	(0.0039)	(0.0042)	(0.0047)	(0.0053)
Area per District			-0.0582	-0.1081	-0.1354	-0.1090
			(0.1128)	(0.1402)	(0.1391)	(0.1541)
Population Density				-0.8775	-1.2064	-0.8094
				(0.8750)	(0.9068)	(1.0235)
GDP per capita					-0.1159	0.0302
					(0.1124)	(0.2965)
% Urban						-0.0087
						(0.0144)
# Obs	19	19	19	19	19	19
R^2	0.1269	0.5086	0.5227	0.5422	0.5753	0.5933

What Predicts Direct British Rule? • Back

	(1)	(0)	(2)	(4)	(5)
Dep var: Direct Rule (=1)	(1)	(2)	(3)	(4)	(¢)
ALC: L (MCL)	0.0000				0.0000
Altitude (MSL)	0.0002				0.0002
6 . (. 1)	(0.0003)				(0.0002)
Coast (=1)	0.1820				0.1720
	(0.1170)				(0.1179)
In(Area)	-0.0637				-0.0692
	(0.0816)				(0.0799)
Slope	-1.0837				2.6706
	(3.6432)				(2.3314)
Rain (cm)	0.0015				0.0012
	(0.0010)				(0.0009)
Max-Temp	0.0061				-0.0010
	(0.0113)				(0.0113)
Min-Temp	0.0126				0.0028
	(0.0104)				(0.0090)
In(Distance)		0.0396			0.0707
		(0.0611)			(0.0577)
Maratha Ruler			0.2279		0.2449
			(0.1550)		(0.1524)
Muslim Ruler			0.3853***		0.3319**
			(0.1276)		(0.1420)
Prop Muslim				0.2663	-0.1818
				(0.3447)	(0.2848)
Prop Sikhs				0.6377	-0.2291
				(1.0841)	(0.9907)
Prop Lower Caste				0.5613	0.5439
				(0.3940)	(0.3518)
Prop Elites				-0.3153	-0.1544
				(0.6895)	(0.6948)
Constant	0.5330	0.4275	0.4336***	0.5111***	0.3777
	(0.8825)	(0.3253)	(0.0933)	(0.1445)	(0.9042)
	()	(====)	(()	()
# Obs	294	294	294	294	294
R^2	0.0814	0.0042	0.1257	0.0293	0.1939